University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 3 - Motion in Two or Three Dimensions - Problems - Exercises - Page 98: 3.71

Answer

(a) Speed of the windis , $v_w=44.72 \space km/h$, $63.34^0$ north of west. (b) Direction of motion of airplane w.r.t. air is $10.48^0$ north of west.

Work Step by Step

(a) Velocity of airplane (p) with respect to air (a), $v_{pa}=-(220 \space km/h) \hat{i}$. The displacement of the airplane w.r.t. ground, $s_{p}=-(120 \space km) \hat{i}-(20 \space km) \hat{j}$. So, velocity of airplane (p) w.r.t. ground will be, $v_{p}=\frac{s_p}{t}=\frac{-(120 \space km) \hat{i}-(20 \space km) \hat{j}}{0.5\space h}$ $\Rightarrow v_p=-(240 \space km/h) \hat{i}-(40 \space km/h) \hat{j}$ Now, $v_{pa}=v_{p}-v_{a}\Rightarrow v_{a}=v_{pa}-v_{p}=-(20 \space km/h) \hat{i}+(40 \space km/h) \hat{j}$ So, speed of the windis , $v_w=\sqrt{(-20)^2+40^2}=20\sqrt5 \space km/h=44.72 \space km/h$ And its direction is, $\theta=tan^{-1}|{\frac {v_y}{v_x}|}=tan^{-1}2=63.34^0$ north of west. (b) Let speed of the airplane w.r.t. air $220 \space km/h$ at an angle $\theta$ towards north of west. Then $v_{pa}=-220cos\theta \hat{i}+220sin\theta \hat{j}$ Now, velocity of airplane w.r.t. ground, $v_{p}=v_{pa}+v_{a}=-220cos\theta \hat{i}+(220sin\theta-40) \hat{j}$ For airplane to travel westward, y-component of $v_p$ must be zero, So, $220sin\theta-40=0\Rightarrow sin\theta=\frac{40}{220}\Rightarrow theta=sin^{-1}\frac{2}{11}=10.48^0$ north of west.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.