University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 3 - Motion in Two or Three Dimensions - Problems - Exercises - Page 98: 3.69

Answer

(a) Minimum required speed of the rock, $u_{min}=13.3 \space m/s$ (b) Rock lands on the ground at distance $D=3.75 \space m$ from the fence.

Work Step by Step

(a) Using equation of trajectory, $y=xtan\theta-\frac{gx^2}{2u^2cos^2\theta}$ At $x=14\space m$, minimum value of y is, $ y=5.0-1.6=3.4\space m$ . So, $3.4=14tan56^0-\frac{9.8\times14^2}{2u^2cos^256^0}\Rightarrow u_{min}=\sqrt \frac{9.8\times14^2}{2u^2cos^256^0(14tan56^0-3.4)}=13.3 \space m/s$ (b) When ball falls on the ground, $y=-1.6\space m$ with respect to point of projection, So using equation of trajectory, $y=xtan\theta-\frac{gx^2}{2u^2cos^2\theta} \Rightarrow -1.6=xtan56^0-\frac{9.8\times x^2}{2\times13.3^2cos^256^0}$ Solving this quadratic equation in x, we positive solution of x as, $x=17.75\space m$. So, rock lands on the ground at distance $D=17.75-14=3.75 \space m$ from the fence.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.