Answer
a) $V_{x}=6.46m/s$
$V_{y}=0.518m/s$
b)V=6.47m/s at $4.6^{\circ}$ counterclockwise from the +x-axis
Work Step by Step
$a)a_{x ave}= 0.45cos(31^{\circ})$
$a_{y ave}= 0.45sin(31^{\circ})$
$V_{x}=u_{x}+a_{x ave}t$
=$2.6+0.45(10)cos(31^{\circ}) = 6.46m/s$
$V_{y}=u_{y}+a_{y ave}t$ = $-1.8+0.45(10)sin(31^{\circ}) = 0.518m/s$
$b)V=\sqrt ((V_{x})^{2} + (V_{y})^{2}) $= $\sqrt (6.46^{2} + 0.518^{2}) = 6.47m/s$
$angle = arctan (\frac{0.518}{6.46}) = 4.6^{\circ}$