Answer
(a) x = -45.6 meters
y = 58.8 meters
(b) The rhinoceros is 74.41 meters from the origin.
Work Step by Step
At $t_1 = 0$, the coordinates of the rhinoceros are (0,0).
(a) At $t_2 = 12.0 s$:
$v_{av,x} = \frac{\Delta x}{\Delta t} = \frac{x-0}{12.0~s} = -3.8~m/s$
$x = (12.0~m/s)(-3.8~m/s) = -45.6~m$
$v_{av,y} = \frac{\Delta y}{\Delta t} = \frac{y-0}{12.0~s} = 4.9~m/s$
$y = (4.9~m/s)(12.0~s) = 58.8~m$
(b) We can find the distance $d$ from the origin.
$d = \sqrt{x^2+y^2}$
$d = \sqrt{(-45.6~m)^2+(58.8~m)^2}$
$d = 75~m$
The rhinoceros is 74.41 meters from the origin.