University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 10 - Dynamics of Rotational Motion - Problems - Exercises - Page 330: 10.23

Answer

$h = 14.0 \, \mathrm{m}$

Work Step by Step

Total energy at the bottom of the hill: $$K = \frac{Mv_{cm}^2}{2} + \frac{I\omega^2}{2} = \frac{M\omega^2R^2}{2} + \frac{0.800MR^2\omega^2}{2} = 0.900M\omega^2R^2$$ Total energy at height $h$: $$ E = U - W_{f} = Mgh + W_f $$ Conservation of energy yields: $$0.900M\omega^2R^2 = Mgh + W_f \Rightarrow$$ $$h = \frac{0.900\omega^2R^2}{g} - \frac{W_f}{Mg} = \frac{0.900\omega^2R^2}{g} - \frac{W_f}{w} = $$ $$ \frac{0.900(25.0 \, \mathrm{rad/s})^2(0.600 \, \mathrm{m})^2}{9.80 \, \mathrm{m/s^2}} - \frac{2600 \, \mathrm{J}}{392 \, \mathrm{N}} = 14.0 \, \mathrm{m} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.