University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 10 - Dynamics of Rotational Motion - Problems - Exercises - Page 330: 10.19

Answer

(a) $1/3$ (b) $2/7$ (c) $2/5$ (d) $5/13$

Work Step by Step

Using the formulas for the moments of inertia of all the shapes: (a) $$ K_{rotational} = \frac{I\omega^2}{2} = \frac{MR^2\omega^2}{4} = \frac{Mv_{cm}^2}{4} $$ $$ K_{total} = \frac{Mv_{cm}^2}{4} + \frac{Mv_{cm}^2}{2} = \frac{3Mv_{cm}^2}{4} $$ $$ \frac{K_{rotational}}{K_{total}} = \frac{1}{3} $$ (b) $$ K_{rotational} = \frac{I\omega^2}{2} = \frac{MR^2\omega^2}{5} = \frac{Mv_{cm}^2}{5} $$ $$ K_{total} = \frac{Mv_{cm}^2}{5} + \frac{Mv_{cm}^2}{2} = \frac{7Mv_{cm}^2}{10} $$ $$ \frac{K_{rotational}}{K_{total}} = \frac{2}{7} $$ (c) $$ K_{rotational} = \frac{I\omega^2}{2} = \frac{MR^2\omega^2}{3} = \frac{Mv_{cm}^2}{3} $$ $$ K_{total} = \frac{Mv_{cm}^2}{3} + \frac{Mv_{cm}^2}{2} = \frac{5Mv_{cm}^2}{6} $$ $$ \frac{K_{rotational}}{K_{total}} = \frac{2}{5} $$ (d) $$ I = \frac{M \Big( R^2 + \big( \frac{R}{2} \big)^2 \Big)}{2} = \frac{5MR^2}{8} $$ $$ K_{rotational} = \frac{I\omega^2}{2} = \frac{5MR^2\omega^2}{16} = \frac{5Mv_{cm}^2}{16} $$ $$ K_{total} = \frac{5Mv_{cm}^2}{16} + \frac{Mv_{cm}^2}{2} = \frac{13Mv_{cm}^2}{16} $$ $$ \frac{K_{rotational}}{K_{total}} = \frac{5}{13} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.