University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 10 - Dynamics of Rotational Motion - Problems - Exercises - Page 330: 10.16

Answer

(a) Tension left of pulley $= 32.7 \, \mathrm{N}$ Tension below pulley $= 35.4 \, \mathrm{N}$ (b) $ a = 2.72 \, \mathrm{m/s^2} $ (c) $ \Sigma F_y = 55.0 \, \mathrm{N}$ (straight up) $ \Sigma F_x = 32.7 \, \mathrm{N}$ (to the right)

Work Step by Step

I'll call the tension in the wire between the pulley and the box $T_1$, and the tension between pulley and weight $T_2$. (a) and (b) For the pulley, with positive rotation clockwise: $$ \Sigma \tau = T_2r - T_1r = r(T_2 - T_1) = I\alpha = \frac{Ia}{r} \Rightarrow$$ $$ Ia = r^2(T_2 - T_1) \Rightarrow \frac{m_pa}{2} = T_2 - T_1 $$ For the block, with positive $x$-direction to the right: $$ \Sigma F_x = m_ba = T_1 $$ For the weight, positive $y$-direction down: \begin{equation} \Sigma F_y = m_wa - m_wg-T_2 \Rightarrow m_wg - m_wa = T_2 \end{equation} Subtracting the second equation (block) from the third (weight): $$ m_wg - m_wa - m_ba = T_2 - T_1$$ Inserting into the first (pulley) equation and solving for $a$: $$ \frac{m_pa}{2} = m_wg - m_wa - m_ba \Rightarrow $$ $$ a = \frac{m_wg}{m_p/2 + m_w + m_b} = \frac{(5.00 \, \mathrm{kg})(9.80 \, \mathrm{N/kg})}{(2.00 \, \mathrm{kg})/2 + 5.00 \, \mathrm{kg} + 12.0 \, \mathrm{kg}} = 2.72 \, \mathrm{m/s^2} \, (2.7222...) $$ Calculating $T_1$ and $T_2$: $$ T_1 = (12.0 \, \mathrm{kg})(2.722 \, \mathrm{N/kg}) = 32.7 \, \mathrm{N} $$ $$ T_2 = (5.00 \, \mathrm{kg})(9.80 \, \mathrm{N/kg} - 2.722 \, \mathrm{N/kg}) = 35.4 \, \mathrm{N} $$ (c) For the pulley, with positive $x$-direction to the right and positive $y$-direction up: $$ \Sigma F_x = T_1 = 32.7 \, \mathrm{N} $$ $$ \Sigma F_y = T_2 + m_pg = 35.4 \, \mathrm{N} + (2.00 \, \mathrm{kg})(9.80 \, \mathrm{N/kg}) = 55.0 \, \mathrm{N} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.