University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 10 - Dynamics of Rotational Motion - Problems - Exercises - Page 329: 10.5

Answer

a) See picture. b) $-\boldsymbol{\hat{k}}$ (into the picture) c) $ \vec{\boldsymbol{\tau}} = (-1.05 \, \mathrm{Nm}) \boldsymbol{\hat{k}} $

Work Step by Step

a) See picture. b) Right hand rule for $\vec{\boldsymbol{\tau}} = \vec{\boldsymbol{r}} \times \vec{\boldsymbol{F}}$: Place fingers in direction of $\vec{\boldsymbol{r}}$, then curl them towards $\vec{\boldsymbol{F}}$. Thumb is then in the direction of $\vec{\boldsymbol{\tau}}$, into the picture (in this case). c) $ \vec{\boldsymbol{\tau}} = \vec{\boldsymbol{r}} \times \vec{\boldsymbol{F}} = \big( (-0.450 \, \mathrm{m}) \boldsymbol{\hat{\imath}} + (0.150 \, \mathrm{m}) \boldsymbol{\hat{\jmath}} \big) \times \big( (-5.00 \, \mathrm{N}) \boldsymbol{\hat{\imath}} + (4.00 \, \mathrm{N}) \boldsymbol{\hat{\jmath}} \big) = \big( (-0.450 \, \mathrm{m})(4.00 \, \mathrm{N}) - (0.150 \, \mathrm{m})(-5.00 \, \mathrm{N}) \big) \boldsymbol{\hat{k}}= (-1.05 \, \mathrm{Nm}) \boldsymbol{\hat{k}} $ Negative $z$-direction means that the vector points into the picture, as predicted in b).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.