Answer
$e_{mec}=50\frac{J}{kg}$
$W_{g}=1767.15kW$
Work Step by Step
In this case we only have kinetic energy:
$e_{k}=e_{mec}=\frac{V^2}{2}=\frac{(10\frac{m}{s})^2}{2}=50\frac{J}{kg}$
And the flux of mass:
$m=\rho VA=(1.25\frac{kg}{m^3})*(10\frac{m}{s})*(\frac{\pi*(60m)^2}{4})=35342.92kg/s$
Finally the power generation potential is:
$W_{g}=E_{k}=m*e_{k}=35342.92\frac{kg}{s}*0.05\frac{kJ}{kg}$
$W_{g}=1767.15\frac{kJ}{s}=1767.15kW$