Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 1 - Introduction and Basic Concepts - Problems - Page 50: 1-115

Answer

a) $P = P_{0} \times ( 1 - \frac{\beta z}{T_{0}})^{\frac{g}{R\beta}}$ b)$P = P_{0} \times \exp( \frac{-g_{0}}{R(\beta + \frac{T_{0}}{r})} \times (\frac{1}{(\frac{T_{0}}{\beta r}+1)} \times \ln(\frac{1 + \frac{z}{r}}{1 - \frac{\beta z}{T_{0}}}) + \frac{z}{r+z} ) )$ With $r = 6,370,320m$

Work Step by Step

Assuming the atmospheric to be static, we can apply the hydrostatic law: (1) $dP = - \rho g dz$ Assuming atmospheric air to be an ideal gas, (2) $ \rho = \frac{m}{V} = \frac{P M_{avg}}{RT} $ Where $M_{avg}$ is the weighted average of molar weights of the components of air (28.965 $\frac{kg}{kmol}$), or simplifying it with $R^{*} = \frac{R}{M_{avg}}$ (2*) $ \rho = \frac{P}{R^{*}T} $ a) Plugging the given equation: $T = T_{0} - \beta z$, and (2*) into (1): $dP = - \frac{P}{R^{*}(T_{0} - \beta z)} g dz$ Integrating from the groud level ($z = 0 m, P = P_{0}$): $\int^{P}_{P_{0}} \frac{dP}{P} = \int^{z}_{0} \frac{-gdz}{R^{*}(T_{0} - \beta z)}$ $\int^{P}_{P_{0}} \frac{dP}{P} = \frac{-g}{R^{*}\beta} \int^{z}_{0} \frac{dz}{(\frac{T_{0}}{\beta} - z)}$ $\ln{\frac{P}{P_{0}}} = \frac{-g}{R^{*}\beta} \times -\ln(\frac{\frac{T_{0}}{\beta} - z}{\frac{T_{0}}{\beta}})$ $P = P_{0} \times ( 1 - \frac{\beta z}{T_{0}})^{\frac{g}{R^{*}\beta}}$ b) For simplification, the constant 6,370,320 will be referred as $r$ The given equation is : $g = \frac{g_{0}}{(1+\frac{z}{r})^{2}}$ Similarly as in a: $dP = - \frac{P}{R^{*}(T_{0} - \beta z)} \frac{g_{0}}{(1+\frac{z}{r})^{2}} dz$ $\int^{P}_{P_{0}} \frac{dP}{P} = \int^{z}_{0} \frac{-gdz}{R^{*}(T_{0} - \beta z)}$ $\int^{P}_{P_{0}} \frac{dP}{P} = \frac{-g_{0}}{R^{*}\beta} \int^{z}_{0} \frac{dz}{(\frac{T_{0}}{\beta} - z)(1+\frac{z}{r})^{2}}$ With $\int \frac{dz}{(\frac{T_{0}}{\beta} - z)(1+\frac{z}{r})^{2}} = \frac{1}{(\frac{T_{0}}{\beta r}+1)^{2}} \times \ln(\frac{1 + \frac{z}{r}}{\frac{T_{0}}{\beta} - z}) - \frac{1}{(\frac{T_{0}}{\beta r} + 1)(1 + \frac{z}{r})}$ $\ln{\frac{P}{P_{0}}} = \frac{-g_{0}}{R^{*}\beta} \times (\frac{1}{(\frac{T_{0}}{\beta r}+1)^{2}} \times (\ln(\frac{1 + \frac{z}{r}}{\frac{T_{0}}{\beta} - z}) - \frac{1}{(\frac{T_{0}}{\beta r} + 1)(1 + \frac{z}{r})}) - (\frac{1}{(\frac{T_{0}}{\beta r}+1)^{2}} \times \ln(\frac{1}{\frac{T_{0}}{\beta}}) - \frac{1}{\frac{T_{0}}{\beta r} + 1}))$ $P = P_{0} \times \exp( \frac{-g_{0}}{R^{*}\beta} \times (\frac{1}{(\frac{T_{0}}{\beta r}+1)^{2}} \times \ln(\frac{1 + \frac{z}{r}}{1 - \frac{\beta z}{T_{0}}}) + \frac{(1+\frac{z}{r})-1}{(\frac{T_{0}}{\beta r} + 1)(1 + \frac{z}{r})} ) )$ $P = P_{0} \times \exp( \frac{-g_{0}}{R^{*}(\beta + \frac{T_{0}}{r})} \times (\frac{1}{(\frac{T_{0}}{\beta r}+1)} \times \ln(\frac{1 + \frac{z}{r}}{1 - \frac{\beta z}{T_{0}}}) + \frac{z}{r+z} ) )$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.