Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 1 - Introduction and Basic Concepts - Problems - Page 49: 1-111E

Answer

$P_{centerpipe}=26.33psia$

Work Step by Step

Solving the manometer: $P_{centerpipe}-\rho_{water}gh_{water}+\rho_{oil}gh_{1,oil}-\rho_{mercury}gh_{mercury}-\rho_{oil}gh_{2,oil}=P_{atm}$ $P_{centerpipe}=P_{atm}+\rho_{water}gh_{water}-\rho_{oil}gh_{1,oil}+\rho_{mercury}gh_{mercury}+\rho_{oil}gh_{2,oil}$ $P_{centerpipe}=P_{atm}+g\rho_{water}*(h_{water}-0.8h_{1,oil}+13.6h_{mercury}+0.8h_{2,oil})$ $h_{water}=(20in)*(\frac{1ft}{12in})=\frac{20}{12}ft$ $h_{1,oil}=(60in)*(\frac{1ft}{12in})=5ft$ $h_{mercury}=(25in)*(\frac{1ft}{12in})=\frac{25}{12}ft$ $h_{2,oil}=(30in)*(\frac{1ft}{12in})=2.5ft$ Substituting: $P_{centerpipe}=14.2psia+32.2\frac{ft}{s^2}*62.4\frac{lbm}{ft^3}*(\frac{20}{12}-0.8*5ft+13.6*\frac{25}{12}ft+0.8*2.5ft)*(\frac{1lbf}{32.2\frac{lbm*ft}{s^2}})*(\frac{1ft^2}{144in^2})$ $P_{centerpipe}=26.33psia$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.