Answer
$P_{high}=16.01kPa=2.32psi$
$h_{high,water}=1.63m$
$P_{low}=10.67kPa=1.55psi$
$h_{low,water}=1.09m$
Work Step by Step
Knowing that:
$P=\rho*g*h$
$P_{high}=(13600\frac{kg}{m^3})*(9.81\frac{m}{s^2})*(0.12)=16.01kPa$
$P_{high}=16.01kPa*(\frac{1psi}{6.895kPa})=2.32psi$
$P_{low}=(13600\frac{kg}{m^3})*(9.81\frac{m}{s^2})*(0.08)=10.67kPa$
$P_{low}=10.67kPa*(\frac{1psi}{6.895kPa})=1.55psi$
$h_{high,water}=\frac{P_{high}}{g*\rho_{water}}$
$h_{high,water}=\frac{16010Pa}{(9.81\frac{m}{s^2}*(1000\frac{kg}{m^3})}$
$h_{high,water}=1.63m$
$h_{low,water}=\frac{P_{low}}{g*\rho_{water}}$
$h_{low,water}=\frac{10670Pa}{(9.81\frac{m}{s^2}*(1000\frac{kg}{m^3})}$
$h_{low,water}=1.09m$