Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 1 - Introduction and Basic Concepts - Problems - Page 43: 1-54

Answer

a) $P_{atm}=96.71kPa$ b) $P_{abs}=138.4kPa$

Work Step by Step

a) Knowing that the $\rho_{water}=1000\frac{kg}{m^3}$ we can calculate the gage pressure at a depth of $9m$ $P_{gage,water}=\rho_{water}*g*h=1000\frac{kg}{m^3}*9.81\frac{m}{s^2}*9m=88.29kPa$ As $P_{abs}=P_{atm}+P_{gage}$ $P_{atm}=P_{abs}-P_{gage}=185kPa-88.29kPa=96.71kPa$ b) $\rho_{liquid}=0.85*1000\frac{kg}{m^3}=850\frac{kg}{m^3}$ $P_{gage,liquid}=\rho_{liquid}*g*h=850\frac{kg}{m^3}*9.81\frac{m}{s^2}*5m=41.69kPa$ Then: $P_{abs}=P_{atm}+P_{gage}=96.71kPa+41.69kPa=138.4kPa$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.