Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 4 - Two-Dimensional Kinematics - Problems and Conceptual Exercises - Page 108: 75

Answer

$14.5\frac{m}{s}$

Work Step by Step

We know that $R=(v_{\circ}cos\theta )t$ $\implies t=\frac{R}{v_{\circ}cos\theta}$.....eq(1) We also know that $y=y_{\circ}+(v_{\circ}sin\theta)t-\frac{1}{2}gt^2$ Replacing 't' by the value in eq(1), we obtain: $\implies 0=y_{\circ}+(v_{\circ}sin\theta)(\frac{R}{v_{\circ}cos\theta})-\frac{1}{2}g(\frac{R}{v_{\circ}cos\theta})^2$ This simplifies to: $v_{\circ}^2=\frac{gR^2}{2cos^2\theta(y_{\circ}+Rtan\theta)}$ $\implies v_{\circ}=\sqrt{\frac{gR^2}{2cos^2\theta(y_{\circ}+Rtan\theta)}}$ We plug in the known values to obtain: $v_{\circ}=\sqrt{\frac{(9.81)(23.12)^2}{2cos^2(42.0^{\circ})(1.83+(23.12)tan42.0^{\circ})}}$ $v_{\circ}=14.5\frac{m}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.