Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 3 - Vectors in Physics - Problems and Conceptual Exercises - Page 80: 69

Answer

(a) $(-9.81m/s^2)\hat y$ (b) $(-9.81m/s^2)\hat y$ (c) $(-9.81m/s^2)\hat y$

Work Step by Step

(a) We know that $\vec a_{avg}=\frac{\vec \Delta v}{\Delta t}$ $\vec a_{avg}=\frac{\vec {v_{t+\Delta t}}-\vec v_t}{\Delta t}$ We plug in the known values to obtain: $\vec{a_{avg}}=\frac{(16.6m/s)\hat x-[(9.81m/s^2)(t+\Delta t)]\hat y-[(16.6m/s)\hat x-(9.81m/s^2)t\hat y]}{\Delta t}$ $\vec a_{avg}=\frac{[(-9.81m/s^2)\Delta t]\hat y}{\Delta t}$......eq(1) Now, the average acceleration for $\Delta t=1.00s$ $\vec a_{avg}=(-9.81m/s^2)\hat y$ (b) We can find the average acceleration for $\Delta t=2.50s$ from eq(1) as $\vec a_{avg}=\frac{[(-9.81m/s^2)\Delta t]\hat y}{\Delta t}$ $\vec a_{avg}=(-9.81m/s^2)\hat y$ (c) We can find the average acceleration for $\Delta t=5.00s$ from eq(1) as $\vec a_{avg}=\frac{[(-9.81m/s^2)\Delta t]\hat y}{\Delta t}$ $\vec a_{avg}=(-9.81m/s^2)\hat y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.