Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 56: 129

Answer

(a) $2.3~s$ (b) $20~m/s$

Work Step by Step

$v_0=-4.2~m/s$, $x_0=35~m$, $a=-g=-9.81~m/s^2$ (a) $x=0$ $x=x_0+v_0t+\frac{1}{2}at^2$ $0=x_0+v_0t-\frac{g}{2}t^2$ $t=\frac{-v_0±\sqrt {v_0^2-4(\frac{-g}{2})x_0}}{2(-\frac{g}{2})}=\frac{-v_0±\sqrt {v_0^2+2gx_0}}{-g}$ $t=\frac{-(-4.2~m/s)±\sqrt {(-4.2~m/s)^2+2(9.81~m/s^2)(35~m)}}{-9.81~m/s^2}$ $t_1=-3.1~s$ (not valid) $t_2=2.3~s$ (b) $x=15~m$ $\Delta x=x-x_0=15~m-35~m=-20~m$ $v^2=v_0^2+2a\Delta x$ $v=±\sqrt {(-4.2~m/s)^2+2(-9.81~~m/s^2)(-20~m)}$ $v=±20~m/s$ $v=-20~m/s$ because the bag is moving downward. $speed=|v|=20~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.