Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 56: 128

Answer

(a) $32~m$ (b) $25~m/s$

Work Step by Step

$v_0=6.5~m/s$, $a=-g=-9.81~m/s^2$, $v=0$. $v^2=v_0^2+2a\Delta x$ $0=(6.5~m/s)^2+2(-9.81~m/s^2)\Delta x$ $(19.62~m/s^2)\Delta x=(6.5~m/s)^2$ $\Delta x=\frac{(6.5~m/s)^2}{19.62~m/s^2}=2~m$ That is, $\Delta x=2~m$, no matter what the value of $x_0$ $\Delta x=2~m$ $x-x_0=2~m$ $x=x_0+2~m$ If $x_0=20~m$, then $x=22~m$. If $x_0=30~m$, then $x=32~m$ (b) $v_0=6.5~m/s$, $a=-g=-9.81~m/s^2$, $x_0=30~m$, $x=0$. $\Delta x=x-x_0=0-30~m=-30~m$ $v^2=v_0^2+2a\Delta x$ $v=±\sqrt {(6.5~m/s)^2+2(-9.81~m/s^2)(-30~m)}$ $v=±25~m/s$ $v=-25~m/s$ because the bag is moving downward before it lands. $speed=|v|=25~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.