Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 56: 121

Answer

See the work step by step.

Work Step by Step

(a) $v^2=v_0^2+2a\Delta x$ $\Delta x=x-x_0$. If $x=0$, $\Delta x=-x_0$. Then: $v^2=v_0^2+2a(-x_0)=v_0^2-2ax_0$ $v=±\sqrt {v_0^2-2ax_0}$ (b) $v=v_0+at$. Rearrange fot $t$: $t=\frac{v-v_0}{a}$. If $v=±\sqrt {v_0^2-2ax_0}$, then: $t=\frac{±\sqrt {v_0^2-2ax_0}-v_0}{a}=\frac{-v_0±\sqrt {v_0^2-2ax_0}}{a}$ (c) From Math: $ax^2+bx+c=0$. Then solving for $x$: $x=\frac{-b±\sqrt {b^2-4ac}}{2a}$ Make: $x=t$, $a=\frac{1}{2}a$, $b=v_0$, $c=x_0$. Now we have: $x_0+v_0t+\frac{1}{2}at^2=0$. Then solving for $t$: $t=\frac{-v_0±\sqrt {v_0^2-4\frac{1}{2}ax_0}}{2\frac{1}{2}a}$ $t=\frac{-v_0±\sqrt {v_0^2-2ax_0}}{a}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.