Answer
a) velocity will be zero at $t=3s$
b) $ x = -15 m$
$ a= 18m/s^2$
Work Step by Step
We have
$ x = (2t^3 - 9t^2 + 12) m$
a) $ v_x =\frac{dx}{dt}$
$ v_x = 6t^2 -18t$
now when $v_x =0$
$ 6t^2 - 18t =0$
$ t= 3s$
Hence velocity will be zero at $t=3s$
b)
At $ t=3s$
$ x = (2t^3 - 9t^2 + 12) m$
$ x = (2*3^3 - 9*3^2 + 12) m$
$ x = -15 m$
$ a= \frac{dv}{dt} = \frac{d(6t^2 -18t)}{dt}$
$ a = 12t -18$
At $ t=3s$
$ a= 18m/s^2$