Answer
Energy of the $\gamma $ ray is $E=0.109MeV$
Work Step by Step
Wavelength of emitted $\gamma $ ray is$\lambda=1.14\times10^{-11}m$
From planks hypothesis Energy of a radiation is given by
$E=hf=\frac{hc}{\lambda}$
putting
$h=6.63\times10^{-34}J.s$,
$\lambda=1.14\times10^{-11}m$,,
$c=3\times10^{8}m/s$
$E=\frac{6.63\times10^{-34}J.s\times3\times10^{8}m/s}{1.14\times10^{-11}m}$
$E=17.447368\times10^{-15}J$
Now since $1.6\times10^{-19} J$ is equal to $1eV$
$1J$ is equal to $\frac{1}{1.6\times10^{-19}}eV$
so $17.447368\times10^{-15} J$ is equal to $\frac{17.447368\times10^{-15}}{1.6\times10^{-19}}eV$= $10.9046\times10^{4}eV$
$E=17.447368\times10^{-15}J=10.9046\times10^{4}eV$
$E=0.109\times10^{6}eV=0.109MeV$