Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 31 - Nuclear Physics and Radioactivity - Problems - Page 900: 12

Answer

so mass defect $\Delta m= 0.24089u$

Work Step by Step

Given that binding energy of nucleus is $= 225.0MeV=225.0\times10^{6}eV$ or binding energy $=2.25\times10^{8}eV$ 1 $eV$ is $1.6\times10^{-19}J$ so Binding energy $=2.25\times10^{8}\times 1.6\times10^{-19}J$ Binding energy $=3.6\times10^{-11}J$ From equation 31.3 Binding energy $=B.E. =$ (mass defect)$\times c^2$=$\Delta mc^2$ mass defect $= \frac{B.E.}{c^2}$ putting the value of Binding energy $=3.6\times10^{-11}J$ and $c=3\times10^{8}m/s$ mass defect $\Delta m= \frac{3.6\times10^{-11}J}{(3\times10^{8}m/s)^2}$ mass defect $\Delta m=0.4\times10^{-27}kg$ $1 u $ is equal to $1.6605\times10^{-27}kg$ $1.6605\times10^{-27}kg$ is equal to $1 u $ $1kg$ is equal to $\frac{1}{1.6605\times10^{-27}}u$ so $0.4\times10^{-27}kg$ will be $\frac{0.4\times10^{-27}}{1.6605\times10^{-27}}u=0.24089u$ so mass defect $\Delta m= 0.24089u$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.