Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 11 - Fluids - Problems - Page 310: 35

Answer

(a) 93N (b) 94.97 N

Work Step by Step

(a) Let's take, Force on the input piston = $F_{1}$ Force on the output plunger = $F_{2}$ We know that, Pressure on the input piston $P_{1}$= Pressure on the output plunger $P_{2}$ So, we can write, $\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}-(1)$ Given that, $F_{2}=24500\space N$ (1)=> $F_{1}=F_{2}\times\frac{A_{1}}{A_{2}}=24500\space N[\frac{\pi (7.7\times10^{-3}m)^{2}}{\pi (0.125\space m)^{2}}]=93\space N$ (b) Now, $P_{1}=P_{2}+h\rho g$ $\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}+h\rho g$ $F_{1}=F_{2}\times\frac{A_{1}}{A_{2}}+h\rho g[\pi(7.7\times10^{-3}m)^{2}]$ Let's plug known values into this equation. $F_{1}=93\space N+1.3\space m\times 830\space kg/m^{3}\times9.8\space m/s^{2}[\pi(7.7\times10^{-3}m)^{2}]=(93+1.97)\space N=94.97\space N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.