Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 11 - Fluids - Problems - Page 310: 30

Answer

1.46 m

Work Step by Step

The pressure at the bottom of the right container $P_{R},$ $P_{R}=P_{atm}+h_{1}\rho_{m}g-(1)$ The pressure at the bottom of the left container $P_{L},$ $P_{L}=P_{atm}+h_{w}\rho_{w}g+h_{2}\rho_{m}g-(2)$ (2)=(1)=> $P_{atm}+h_{w}\rho_{w}g+h_{2}\rho_{m}g=P_{atm}+h_{1}\rho_{m}g$ $h_{w}\rho_{w}g+(h_{2}-h_{1})\rho_{m}g=0-(3)$ Given that, $h_{w}=1\space m$ & $h_{1}+h_{2}=1\space m$ (3)=> $h_{w}\rho_{w}g+(2h_{2}-1)\rho_{m}g=0$ $h_{2}=\frac{1}{2}(1-\frac{\rho_{w}}{\rho_{m}})$ ; Let's plug known values into this equation. $h_{2}=\frac{1}{2}(1-\frac{1000\space kg/m^{3}}{13600\space kg/m^{3}})=0.46\space m$ The fluid level in the = $h_{w}+h_{2}=1\space m+0.46\space m=1.46\space m$ left container
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.