Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 11 - Fluids - Problems - Page 308: 4

Answer

(a) $\rho=3.7321\times10^{18}kg/m^3$ (b) $W=1.64439\times10^{12}lb$

Work Step by Step

Mass of a neutron star $M=2.7\times10^{28}kg$ $r=1.2\times10^{3}m$ Thus: $V=\frac{4}{3}\pi r^3$ $V=\frac{4}{3}\pi (1.2\times10^{3}m)^3$ $V=7.23456\times10^{9}m^3$ (a) Density Density of the neutron star will be $\rho=\frac{M}{V}$ $\rho=\frac{2.7\times10^{28}kg}{7.23456\times10^{9}m^3}$ $\rho=0.37321\times10^{19}kg/m^3$ $\rho=3.7321\times10^{18}kg/m^3$ (b) Volume of dime $V=2.0\times10^{-7}m^3$ $\rho=3.7321\times10^{18}kg/m^3$ $\rho=\frac{M}{V}$ $M=\rho V$ $M=3.7321\times10^{18}kg/m^3\times2.0\times10^{-7}m^3$ $M=7.4642\times10^{11}kg$ $W=Mg$ $W=7.4642\times10^{11}kg\times9.8m/s^2$ $W=73.14916\times10^{11}N$ Since $1N=0.2248lb$ $W=73.14916\times10^{11}\times0.2248lb$ $W=16.4439\times10^{11}lb$ $W=1.64439\times10^{12}lb$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.