Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 277: 54

Answer

$1.6\times 10^{-5}\space m$

Work Step by Step

Let's apply equation 10.17 $\Delta L=\frac{FL_{0}}{YA}$ for both types of forces. $\Delta L_{T}=\frac{FL_{0}}{Y_{T}A}-(1)$ and $\Delta L_{C}=\frac{FL_{0}}{Y_{C}A}-(2)$ $(1)\div(2)=>$ $\frac{\Delta L_{T}}{\Delta L_{C}}=\frac{\frac{FL_{0}}{Y_{T}A}}{\frac{FL_{0}}{Y_{C}A}}=\frac{Y_{C}}{Y_{T}}$ ${\Delta L_{T}}=(\frac{Y_{C}}{Y_{T}})\Delta L_{C}$ ; Let's plug known values into this equation. $\Delta L_{T}=(\frac{9.4\times10^{9}\space N/m^{2}}{1.6\times10^{10}N/m^{2}})(2.7\times10^{-5}\space m)=1.6\times10^{-5}m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.