Answer
260 m
Work Step by Step
Recall that $\Delta P=-B\frac{\Delta V}{V_{0}}$
Bulk modulus for pyrex glass is $B=2.6\times10^{10}\,N/m^{2}$
Change in volume $\Delta V=-1.0\times10^{-10}\,m^{3}$ (negative sign for decrease)
Original volume $V_{0}=(1.0\times10^{-2}\,m)^{3}=1.0\times10^{-6}\,m^{3}$
Change in pressure $\Delta P=-(2.6\times10^{10}\,N/m^{2})\times\frac{-1.0\times10^{-10}\,m^{3}}{1.0\times10^{-6}\,m^{3}}$
$=2.6\times10^{6}\,N/m^{2}$
For every $1\,m$ depth, there is an increase in pressure by $1.0\times10^{4}\, N/m^{2}$.
Therefore, Required depth=$\frac{2.6\times10^{6}\,N/m^{2}}{(1.0\times10^{4}\,N/m^{2})/m}=260\,m$