Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 275: 13

Answer

(a) 0.407 m (b) 397 N

Work Step by Step

The kinetic frictional force on the bottom block, $f_{k1}=\mu _{k}(m_{1}+m_{2})g-(1)$ The maximum static frictional force on the top block, $f_{s2}^{max}=\mu_{s}m_{2}g-(2)$ Let's apply Newton's second law to the bottom block, $F-f_{k1}-kx=0-(3)$ Let's apply Newton's second law to the top block, $f_{s2}^{max}-kx=0$ $x=\frac{f_{s2}^{max}}{k}$ (2)=> $x=\frac{\mu_{s}m_{2}g}{k}$ ; Let's plug known values into this equation. $x=\frac{(0.9)(15\space kg)(9.8\space m/s^{2})}{325\space N/m}=0.407\space m$ (b) (3)=> $F=kx+f_{k1}$ (1)=> $F=kx+\mu _{k}(m_{1}+m_{2})g=(325\space N/m)(0.407\space m)+(0.6)(45\space kg)(9.8\space m/s^{2})=397\space N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.