Answer
n = 4
Work Step by Step
Here we use the dimensional analysis to find the value of n. (Symbol $\pi$ & the number 8 have no dimensions)
$Q=\frac{\pi R^{n}(P_{1}-P_{2})}{8\eta L}$
$\frac{[L]^{3}}{[T]}=\frac{[L]^{n}\frac{[M]}{[L][T]^{2}}}{\frac{[M]}{[L][T]}[L]}=\frac{[L]^{n}[T]}{[L][T]^{2}}=\frac{[L]^{n}}{[L][T]}$
$[L]^{3}=[L]^{n-1}=\gt [L]^{4}=[L]^{n}$
So, we find that n = 4