Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 1 - Introduction and Mathematical Concepts - Problems - Page 24: 56

Answer

$(a)\space B=6022\space m$ $(b)\space C=6724\space m$

Work Step by Step

Here we use the component method to find B & C. Since the resultant of the three displacement vectors is zero, $\vec A+\vec B+\vec C=0$ So, let's set the sum of the x components of the vectors equal to zero. $A_{x}+B_{x}+C_{x}=0$ ; Let's plug known values into this equation. $1550\space m\times cos25^{\circ}+Bsin41^{\circ}+(-Ccos35^{\circ})=0$ $C=\frac{1405\space m+0.66B}{0.8}-(1)$ Similarly, $A_{x}+B_{x}+C_{x}=0$ ; Let's plug known values into this equation. $1550\space m\times sin25^{\circ}-(+Bcos41^{\circ})+Csin35^{\circ}=0$ $655\space m-0.75B+0.57C=0-(2)$ (1)=>(2) $655\space m-0.75B+(0.57)\frac{(1405\space m+0.66B)}{0.8}=0$ $524\space m-0.6B+801\space m+0.38B=0$ $B=6022\space m$ (1)=> $C=\frac{1405\space m+0.66\times6022\space m}{0.8}=6724\space m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.