Answer
$\text{1) Adding a constant }V_0\text{ to potential energy term just adds }$
$\text{a phase factor of }e^{-\iota V_0 t/\hbar}$
$$\psi_0 = \psi^{-\iota V_0 t/\hbar}$$
$\text{2) Adding a constant }V_0\text{ to potential energy term doesn't }$
$\text{have any effect on expectation value of a dynamic variable.}$
Work Step by Step
$\text{Suppose that } \psi\text{ is the solution to the time-dependent}$
$\text{Schrödinger equation without the added potential, So}$
$$\iota \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}+V\psi\qquad ...(1)$$
$\text{Claim that the solution to the Schrödinger Equation with the }$
$\text{constant potential offset } V_0 \text{ should be:}$
$$\psi_0 = \psi e^{-\iota V_0 t/\hbar}$$
$\text{Consider,}$
$$\iota \hbar \frac{\partial \psi_0}{\partial t} = \iota \hbar \frac{\partial \psi}{\partial t} e^{-\iota V_0 t/\hbar}+\iota \hbar\big(\frac{-\iota V_0}{\hbar}\big) \psi e^{-\iota V_0t/h}$$
$\text{From equation (1)}$
$$\iota \hbar \frac{\partial \psi_0}{\partial t} = \big(-\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}+V\psi\big) e^{-\iota V_0 t/\hbar}+V_0 \psi e^{-\iota V_0t/h}$$
$\text{Also,}$
$$\frac{\partial^2 \psi_0}{\partial x^2} = \frac{\partial^2 \psi}{\partial
x^2}e^{-\iota V_0 t/\hbar}$$
$\text{Therefore, equation becomes:}$
$$\iota \hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 \psi_0}{\partial x^2}+V\psi e^{-\iota V_0 t/\hbar}+V_0 \psi e^{-\iota V_0t/h}$$
$$\iota \hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 \psi_0}{\partial x^2}+(V+V_0) \psi e^{-\iota V_0t/h}$$
$$\iota \hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 \psi_0}{\partial x^2}+(V+V_0) \psi_0$$
$\psi_0 \text{ satisfies the Schrödinger wave equation.}$
$\text{Thus, shifting the overall potential energy by a constant }$
$\text{amount }V_0\text{ just adds a phase factor }e^{-\iota V_0t/\hbar}$
$\text{Expectation Value of any dynamic value }Q(x, p)$
$\text{is given by }$
$$\langle Q(x, p) \rangle = \int \psi^* Q\big(x, \frac{\hbar}{\iota}\frac{\partial}{\partial x}\big)\psi dx$$
$\text{For }\psi = \psi_0$
$$\langle Q(x, p) \rangle = \int \psi_0^* Q\big(x, \frac{\hbar}{\iota}\frac{\partial}{\partial x}\big)\psi_0 dx$$
$$\langle Q(x, p) \rangle = \int \psi^*e^{\iota V_0 t/\hbar} Q\big(x, \frac{\hbar}{\iota}\frac{\partial}{\partial x}\big)\psi e^{-\iota V_0 t/\hbar} dx$$
$$\langle Q(x, p) \rangle = \int \psi^* Q\big(x, \frac{\hbar}{\iota}\frac{\partial}{\partial x}\big)\psi dx$$
$\text{So adding a constant }V_0\text{ to potential energy term doesn't }$
$\text{have any effect on expectation value of a dynamic variable.}$