Introduction to Quantum Mechanics 2nd Edition

Published by Cambridge University Press
ISBN 10: 1107179866
ISBN 13: 978-1-10717-986-8

Chapter 1 - Section 1.3 - Probability - Problems - Page 12: 1.1

Answer

a) $\lt{j}^{2}\gt$ =459.571 $\hspace{.4cm}{\lt{j}\gt}^{2}\hspace{.1cm}$= 441 b) j $\hspace{2cm}\Delta{j}$ 14 $\hspace{1.7cm}$ -7 15 $\hspace{1.7cm}$ -6 16 $\hspace{1.7cm}$ -5 22 $\hspace{1.8cm}$ 1 24 $\hspace{1.8cm}$ 3 25 $\hspace{1.8cm}$ 4 $\sigma=4.309$ c)Equation 1.12 is verified

Work Step by Step

a) $\lt{j}^{2}\gt$ =$\sum_{j=0}^{\infty}{j}^{2}P(j)$ , $P(j)=\frac{N(j)}{N}$ (Probability of getting age j = number of people of age j/total number of people) N=$\sum_{j=0}^{\infty}N(j)$=1+1+3+2+2+5=14 $\lt{j}^{2}\gt$=$14^{2}(\frac{1}{14}) + 15^{2}(\frac{1}{14}) + 16^{2}(\frac{3}{14}) + 22^{2}(\frac{2}{14}) + 24^{2}(\frac{2}{14}) + 25^{2}(\frac{5}{14})$ $\hspace{1.3cm}$=$\large\frac{(196 + 225 + 768 + 968 + 1152 + 3125)}{14} =\frac{6434}{14} =\normalsize 459.571$ ${\lt{j}\gt}^2$ =${(\sum_{j=0}^{\infty}{j}P(j))}^{2}$ ${\lt{j}\gt}^2$=${(14(\frac{1}{14}) + 15(\frac{1}{14}) + 16(\frac{3}{14}) + 22(\frac{2}{14}) + 24(\frac{2}{14}) + 25(\frac{5}{14}))}^{2}$ $\hspace{1.3cm}$=$\large\frac{{(14 + 15 + 16 + 44 + 48 + 125)}^{2}}{196}=\frac{{(294)}^{2}}{196}=\frac{86436}{196}=\normalsize441$ b) $\Delta{j}=j-\lt{j}\gt$ $\lt{j}\gt=\sqrt{441}=21$ (found in part a)) $\Delta{j}\vert_{j=14}=14-21=-7$ $\Delta{j}\vert_{j=15}=15-21=-6$ $\Delta{j}\vert_{j=16}=16-21=-5$ $\Delta{j}\vert_{j=22}=22-21=1$ $\Delta{j}\vert_{j=24}=24-21=3$ $\Delta{j}\vert_{j=25}=25-21=4$ $\sigma=\sqrt{\lt{{(\Delta{j})}^2}\gt}$=$\sum_{j=0}^{\infty}{(\Delta{j})}^{2}P(j)$ , $P(j)=\frac{N(j)}{N}$ $\sigma$=$\small\sqrt{(-7)^{2}(\frac{1}{14}) + (-6)^{2}(\frac{1}{14}) + (-5)^{2}(\frac{3}{14}) + (1)^{2}(\frac{2}{14}) + (3)^{2}(\frac{2}{14}) + (4)^{2}(\frac{5}{14})}$ $\hspace{.3cm}$=$\large\sqrt{\frac{49+ 36+75+2+18+80}{14}}={\normalsize\sqrt{18.57}}=\normalsize4.309$ c) $\sigma=\sqrt{\lt{j}^{2}\gt-{\lt{j}\gt}^2}$ From a) $\lt{j}^{2}\gt=459.571$ ${\lt{j}\gt}^2=441$ $\Rightarrow\sigma=\sqrt{459.571-441}=\sqrt{18.571}=4.309$, which agrees with the result obtained in part b)
This answer is currently locked

Someone from the community is currently working feverishly to complete this textbook answer. Don’t worry, it shouldn’t be long.