Introduction to Quantum Mechanics 2nd Edition

Published by Cambridge University Press
ISBN 10: 1107179866
ISBN 13: 978-1-10717-986-8

Chapter 1 - Section 1.5 - Momentum - Problems - Page 18: 1.7

Answer

$$\frac{d\langle p\rangle}{dt} = \langle -\frac{\partial V}{\partial x}\rangle $$

Work Step by Step

$\text{We'll be using the following equations in our solution:}$ $$\frac{\partial \psi}{\partial t} = \frac{\iota \hbar}{2m}\frac{\partial^2\psi}{\partial x^2} - \frac{\iota}{\hbar}V \psi \qquad...(1)$$ $$\frac{\partial \psi^*}{\partial t} = -\frac{\iota \hbar}{2m}\frac{\partial^2\psi^*}{\partial x^2} + \frac{\iota}{\hbar}V \psi^* \qquad...(2)$$ $\text{I will be not putting the limits of integration to keep the }$ $\text{solution clean.}$ $$\langle p\rangle = \int \psi^*\big(\frac{\hbar}{\iota}\frac{\partial}{\partial x}\big)\psi dx $$ $$\langle p\rangle = -\iota \hbar \int \psi^*\frac{\partial \psi }{\partial x}dx $$ $$\frac{d\langle p\rangle}{dt} =\frac{d}{dt}\big(-\iota \hbar \int \psi^*\frac{\partial \psi }{\partial x}dx\big)$$ $$\frac{d\langle p\rangle}{dt} =-\iota \hbar \int \frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big)dx$$ $\text{Consider,}$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial x} + \psi^* \frac{\partial}{\partial t}\frac{\partial \psi}{\partial x}$$ $\text{But,}$ $$\frac{\partial}{\partial t}\frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x}\frac{\partial \psi}{\partial t}$$ $\text{Hence,}$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial x} + \psi^* \frac{\partial}{\partial x}\frac{\partial \psi}{\partial t}$$ $\text{Using equation }1 \text{ and } 2$, $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \big(-\frac{\iota \hbar}{2m}\frac{\partial^2\psi^*}{\partial x^2} + \frac{\iota}{\hbar}V \psi^* \big)\frac{\partial \psi}{\partial x} + \psi^* \frac{\partial}{\partial x}\big(\frac{\iota \hbar}{2m}\frac{\partial^2\psi}{\partial x^2} - \frac{\iota}{\hbar}V \psi\big)$$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \big(-\frac{\iota \hbar}{2m}\frac{\partial^2\psi^*}{\partial x^2}\frac{\partial \psi}{\partial x} + \frac{\iota}{\hbar}V \psi^*\frac{\partial \psi}{\partial x} \big) + \big(\frac{\iota \hbar}{2m}\psi^*\frac{\partial^3\psi}{\partial x^3} - \frac{\iota}{\hbar} \psi^* \frac{\partial}{\partial x}(V \psi)\big)$$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \frac{\iota \hbar}{2m}\big(\psi^*\frac{\partial^3\psi}{\partial x^3} - \frac{\partial^2\psi^*}{\partial x^2}\frac{\partial \psi}{\partial x}\big) + \frac{\iota}{\hbar}V \psi^*\frac{\partial \psi}{\partial x} - \frac{\iota}{\hbar} \psi^* \frac{\partial}{\partial x}(V \psi)$$ $\text{Upon Integrating the first term vanishes, Hence:}$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = \frac{\iota}{\hbar}V \psi^*\frac{\partial \psi}{\partial x} - \frac{\iota}{\hbar} \psi^* \frac{\partial}{\partial x}(V \psi)$$ $$\frac{\partial}{\partial t}\big(\psi^*\frac{\partial \psi }{\partial x}\big) = -\frac{\iota}{\hbar}\psi^*\psi \frac{\partial V}{\partial x}$$ $\text{The initial equation finally becomes:}$ $$\frac{d\langle p\rangle}{dt} =-\iota \hbar \int \big(-\frac{\iota}{\hbar}\psi^*\psi \frac{\partial V}{\partial x}\big)dx$$ $$\frac{d\langle p\rangle}{dt} = \int \big(\psi^* \frac{-\partial V}{\partial x} \psi \big)dx$$ $$\frac{d\langle p\rangle}{dt} = \langle -\frac{\partial V}{\partial x}\rangle $$ $\text{Hence Proved}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.