Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 2 - Section 2.3 - Divergence and Curl of Electrostatic Fields - Problem - Page 76: 15

Answer

(i) $E= 0$ (ii)$ E= \frac{k}{ε_{0}}(\frac{r - a}{r^2})\hat r$ (iii)$ E= \frac{k}{ε_{0}}(\frac{b - a}{r^2})\hat r$

Work Step by Step

(i) By guasses law $ ∫E.ds =\frac{q_{en}}{ε_{0}}$ but $q_{en} = 0 $ for $r\lt a$ Hence $E =0$ (ii) for $a\lt r \lt b$ $ ∫E.ds =\frac{q_{en}}{ε_{0}}$ lets compute $q_{en}$ first Consider a volume element $dτ$ at a distance x from the center of the shell with a thickness of $dx$, such that $ a\lt x \lt b$ $q_{en} = ∫_{a}^{r}ρdτ $ $q_{en} = ∫_{a}^{r} \frac{k}{x^{2}} dτ = ∫_{a}^{r} \frac{k}{x^{2}} 4πx^{2}dx$ $q_{en} = 4πk∫_{a}^{r}dx = 4πk|x|_{a}^{r} = 4πk(r-a)$ By gausses law $ ∫E.ds =\frac{q_{en}}{ε_{0}}$ $ |E| 4πr^{2}=\frac{q_{en}}{ε_{0}}$ $ |E| 4πr^{2}=\frac{4πk(r-a)}{ε_{0}}$ $|E| =\frac{k}{ε_{0}}\frac{(r-a)}{r^{2}}$ since $E $ is in the direction of $\vec r$ $\vec E =\frac{k}{ε_{0}}\frac{(r-a)}{r^{2}}\hat r$ (iii) For $ r\gt b$ $ q_{en} =q_{total} =∫_{a}^{b}ρdτ = 4πk|x|_{a}^{b} = 4πk(b-a)$ By gausses law $ ∫E.ds =\frac{q_{en}}{ε_{0}}$ $ |E| 4πr^{2}=\frac{4πk(b-a)}{ε_{0}}$ $|E| =\frac{k}{ε_{0}}\frac{(b-a)}{r^{2}}$ or $\vec E =\frac{k}{ε_{0}}\frac{(b-a)}{r^{2}}\hat r$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.