Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 2 - Section 2.3 - Divergence and Curl of Electrostatic Fields - Problem - Page 76: 14

Answer

$$\vec{E} = \frac{1}{4\pi\epsilon_0}\pi k{r_0}^2\hat{r}$$

Work Step by Step

Given, $\rho = kr$ Consider a spherical Gaussian surface of radius $r_0$ such that $r_0\le R$ where $R$ is the radius of the sphere. By Gauss Law, $$\oint \vec{E}\cdot \vec{da} = \frac{Q_{enc}}{\epsilon_0}$$ Since the charge distribution is radially symmetrical, the direction of the electric field will be radially outwards. $$\therefore E\times 4\pi {r_0}^2 = \frac{Q_{enc}}{\epsilon_0}$$ $Q_{enc} = \int_{vol.}\rho \times d\tau$ $Q_{enc} = \int_{vol.}kr \times r^2 sin\theta dr d\theta d\phi$ $Q_{enc} = k\int_0^{r_0} r^3 dr \int_0^{\pi} sin\theta d\theta \int_0^{2\pi}d\phi$ $Q_{enc} = k\times \frac{r^4}{4} \times 2 \times 2\pi$ $Q_{enc} = k\pi {r_0}^4$ $$\therefore E\times 4\pi {r_0}^2 = \frac{k\pi{r_0}^4}{\epsilon_0}$$ $$\therefore E = \frac{1}{4\epsilon_0}k{r_0}^2$$ $$\therefore E = \frac{1}{4\pi\epsilon_0}\pi k{r_0}^2$$ $$\therefore \vec{E} = \frac{1}{4\pi\epsilon_0}\pi k{r_0}^2\hat{r}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.