Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 2 - Section 2.3 - Divergence and Curl of Electrostatic Fields - Problem - Page 76: 12

Answer

For $r\ge R, \vec{E}=\frac{\rho\times R^3}{ 3 \epsilon_0 r^2}\hat{r}$ For $r< R, \vec{E}=\frac{\rho \times r}{3\epsilon_0}\hat{r}$

Work Step by Step

Consider a gaussian spherical surface of radius $r$ where $r\ge R$ According to Gauss Law, $$\oint \vec{E}\cdot \vec{da} = \frac{Q_{enc}}{\epsilon_{0}} = \frac{\rho\times \frac{4}{3}\pi R^3}{\epsilon_0}$$ At all places of the Gaussian surface, $\vec{E}$ and $\vec{da}$ point in the same direction i.e $\hat{r}$ $$E\times 4\pi r^2 = \frac{\rho\times \frac{4}{3}\pi R^3}{\epsilon_0}$$ $$\vec{E} = \frac{\rho\times R^3}{ 3 \epsilon_0 r^2}\hat{r}$$ Now, For $r< R, Q_{enc} = \rho \times \frac{4}{3}\pi r^3$ $$E\times 4\pi r^2 = \frac{\rho \times \frac{4}{3}\pi r^3}{\epsilon_0}$$ $$E = \frac{\rho \times r}{3\epsilon_0}\hat{r}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.