Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - More Problems on This Chapter - Problem - Page 55: 56

Answer

$\oint_L \vec{v}\cdot \vec{dl} = \oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da}= \frac{8}{3}$

Work Step by Step

$\vec{v} = 6\hat{i} + yz^2\hat{j} + (3y+z)\hat{k}$ $\vec{dl} = dx\hat{i} + dy\hat{j} + dz \hat{k}$ Break the line integral into 3 parts where $L_1$ denotes the line integral where y changes from $0$ to $1$, $x=0, z=0$ $\int_{L_1}\vec{v}\cdot \vec{dl} =\int_{L_1} (6\hat{i} + 3y\hat{k})\cdot (dy\hat{j}) = 0$ $L_2$ denotes the line integral of the line $z = -2y+2, x=0$ $dz = -2dy$ $\int_{L_2}\vec{v}\cdot \vec{dl} =\int_{L_2} (6\hat{i} + yz^2\hat{j} + (3y+z)\hat{k})\cdot (dy\hat{j} + dz\hat{k})$ $\int_{L_2}\vec{v}\cdot \vec{dl} =\int_{L_2} (yz^2dy + (3y+z)dz$ $\int_{L_2}\vec{v}\cdot \vec{dl} =\int_{L_2} (y(-2y+2)^2dy + (3y+(-2y+2))(-2dy)$ $\int_{L_2}\vec{v}\cdot \vec{dl} =\int_1^0 (4y^3 - 8y^2+2y-4)dy$ $\int_{L_2}\vec{v}\cdot \vec{dl} =\big[y^4 - \frac{8y^3}{3}+y^2-4y \big]_1^0= \frac{8}{3} + 2$ $L_3$ denotes the line integral where $z$ changes from $2$ to $0$, $x=0, y=0$ $\int_{L_3}\vec{v}\cdot \vec{dl} =\int_{L_3} (6\hat{i} + z\hat{k})\cdot (dz\hat{k}) $ $\int_{L_3}\vec{v}\cdot \vec{dl} =\int_2^0 z dz = -2 $ $\oint_L \vec{v}\cdot \vec{dl} = \int_{L_1} \vec{v}\cdot \vec{dl} + \int_{L_2} \vec{v}\cdot \vec{dl} + \int_{L_3} \vec{v}\cdot \vec{dl} = \frac{8}{3}$ $\vec{\triangledown} \times \vec{v} = \begin{vmatrix} \hat{i} && \hat{j} && \hat{k}\\ {\partial \over \partial x} && {\partial \over \partial y} && {\partial \over \partial z}\\ 6 && yz^2 && (3y+z) \end{vmatrix} $ $\vec{\triangledown} \times \vec{v} = \hat{i}(3-2yz) -0\cdot\hat{j} + 0\cdot\hat{k} = \hat{i}(3-2yz)$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} =\oint_S (3-2yz)\hat{i}\cdot dydz\hat{i} = \oint_S (3-2yz) dy dz$ Here when $y$ varies from $0$ to $1$, $z$ varies from $0$ to $-2y+2$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = \int_0^1 \int_0^{-2y+2}(3-2yz)dzdy$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = \int_0^1\big[ \big[3z-yz^2\big]_0^{-2y+2}dz\big]dy$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = \int_0^1 \big[3(-2y+2)-y(-2y+2)^2\big]dy$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = \int_0^1 \big[-4y^3 + 8y^2 -10y+6\big]dy$ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = \big[-y^4 + \frac{8}{3}y^3 -5y^2+6y\big]_0^1 $ $\oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da} = -1+\frac{8}{3}-5+6 = \frac{8}{3}$ Hence, $\oint_L \vec{v}\cdot \vec{dl} = \oint_S (\vec{\triangledown} \times \vec{v})\cdot \vec{da}= \frac{8}{3}$ Hence, Stokes theorem is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.