Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - More Problems on This Chapter - Problem - Page 55: 54

Answer

$\int_{vol.} (\vec{\triangledown}\cdot \vec{v})d\tau = \oint_S \vec{v}\cdot\vec{da} = \frac{1}{4}\pi R^4$

Work Step by Step

Let's consider the octant where $r$ varies from $0$ to $R$ $\theta$ varies from $0$ to $\pi\over 2$ $\phi$ varies from $0$ to $\pi\over 2$ Given $\vec{v} = r^2cos\theta \hat{r} + r^2 cos\phi\hat{\theta} - r^2 cos\theta sin\phi \hat{\phi} $ $\vec{\triangledown}\cdot \vec{v} = \frac{1}{r^2 sin\theta}\big[\frac{\partial}{\partial r}(r^2sin\theta \cdot r^2 cos\theta) + \frac{\partial}{\partial \theta}(rsin\theta \cdot r^2 cos\phi) + \frac{\partial}{\partial \phi} (r\cdot (-r^2 cos\theta sin\phi))\big]$ $\vec{\triangledown}\cdot \vec{v} = \frac{1}{r^2 sin\theta}\big[ sin\theta cos\theta 4r^3+ r^3cos\phi cos\theta -r^3 cos\theta cos\phi\big]$ $\vec{\triangledown}\cdot \vec{v} = 4rcos\theta$ $\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = \int_{vol.} 4rcos\theta \cdot r^2 sin\theta dr d\theta d\phi $ $\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = 4\times \int_0^R r^3 dr\times \int_0^{\pi \over 2} cos\theta sin\theta d\theta \times \int_0^{\pi \over 2} d\phi$ $\int_{vol.}(\vec{\triangledown}\cdot \vec{v}) d\tau = 4\times \frac{R^4}{4}\times \frac{1}{2} \times \frac{\pi}{2} = \frac{1}{4} \pi R^4$ Divide the surface into 4 parts where $S_1$ represents the part on the on the $xy$ plane. Hence $\theta = \pi/2$ $\int_{S_1} \vec{v}\cdot \vec{da} = \int_{S_1} (r^2 cos\phi \hat{\theta})\cdot (r dr d\phi \hat{\theta})$ $\int_{S_1} \vec{v}\cdot \vec{da} = \int_0^R r^3 dr \int_0^{\pi/2} cos\phi d\phi$ $\int_{S_1} \vec{v}\cdot \vec{da} = \frac{R^4}{4} \times 1 = \frac{1}{4} R^4$ $S_2$ represents the part on the on the $yz$ plane. Hence $\phi = \pi/2$ $\int_{S_2} \vec{v}\cdot \vec{da} = \int_{S_2} (r^2 cos\theta \hat{r} - r^2 cos\theta \hat{\phi})\cdot (r dr d\theta \hat{\phi})$ $\int_{S_2} \vec{v}\cdot \vec{da} = \int_{S_2} - r^3 cos\theta dr d\theta $ $\int_{S_2} \vec{v}\cdot \vec{da} = -\int_0^R r^3 dr \int_0^{\pi/2} cos\theta d\theta$ $\int_{S_2} \vec{v}\cdot \vec{da} = -\frac{R^4}{4} \times 1 = -\frac{1}{4} R^4$ $S_3$ represents the part on the on the $xz$ plane. Hence $\phi = 0$ $\int_{S_3} \vec{v}\cdot \vec{da} = \int_{S_3} (r^2 cos\theta \hat{r} + r^2 cos\phi \hat{\theta})\cdot (-r dr d\theta \hat{\phi}) = 0$ $S_4$ represents the curved part of the sphere . Hence $r = R$ $\int_{S_4} \vec{v}\cdot \vec{da} = \int_{S_4} (R^2 cos\theta \hat{r} + R^2 cos\phi \hat{\theta}-R^2 cos\theta sin\phi \hat{\phi})\cdot (R^2 sin\theta d\theta d\phi \hat{r})$ $\int_{S_4} \vec{v}\cdot \vec{da} = \int_{S_4} (R^4 cos\theta sin\theta d\theta d\phi) $ $\int_{S_4} \vec{v}\cdot \vec{da} = R^4\int_0^{\pi /2} cos\theta sin\theta d\theta \int_0^{\pi/2} d\phi$ $\int_{S_4} \vec{v}\cdot \vec{da} = R^4\times \frac{1}{2} \times \frac{\pi}{2} = \frac{1}{4}\pi R^4$ $\oint_S \vec{v}\cdot \vec{da}= \int_{S_1}\vec{v}\cdot \vec{da}+\int_{S_2}\vec{v}\cdot \vec{da}+\int_{S_3}\vec{v}\cdot \vec{da}+\int_{S_4}\vec{v}\cdot \vec{da}$ $\oint_S \vec{v}\cdot \vec{da}= \frac{1}{4}\pi R^4$ Hence $\int_{vol.} (\vec{\triangledown}\cdot \vec{v})d\tau = \oint_S \vec{v}\cdot\vec{da}$ Hence divergence theorem is verified
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.