Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - More Problems on This Chapter - Problem - Page 55: 55

Answer

$(b-a)\pi R^2$

Work Step by Step

Given function is $\vec{v} = ay\hat{x} + bx\hat{y} $ where $a$ and $b$ are constants. The path given is a circular path of radius $R$ in the $xy$ plane Stokes' Theorem states that $\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}= \oint_C \vec{v}\cdot \vec{dl} $ In Cartesian coordinate System $\vec{da} = dxdy\hat{z}$ and $\vec{dl} = dx\hat{x} + dy\hat{y}$ $ (\vec{\nabla} \times \vec{v})= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ ay & bx & 0 \end{vmatrix}$ $\qquad \quad \space = \hat{x}(\frac{\partial}{\partial{y}} (0)- \frac{\partial}{\partial{z}} (x)) - \hat{y}(\frac{\partial}{\partial{x}} (0) - \frac{\partial}{\partial{z}} (ay))+\hat{z}(\frac{\partial}{\partial{x}} (bx) - \frac{\partial}{\partial{y}} (ay))$ $\qquad \quad \space = \hat{z}(b-a)$ And hence $\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=\int_S (b-a)\hat{z}\cdot dxdy\hat{z}$ Since $(b-a)$ is constant $\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=(b-a)\int_S dxdy$ For the given surface $\int_S dxdy = \pi R^2$ Hence, $\int_S (\vec{\nabla} \times \vec{v})\cdot \vec{da}=\pi R^2 \qquad ...(i)$ $\oint_C \vec{v}.\vec{dl} = \oint_C (ay\hat{x} + bx\hat{y})\cdot (dx\hat{x}+dy\hat{y})$ $\oint_C \vec{v}.\vec{dl} = \oint_C (aydx + bxdy)$ For computing the line integral, Let's divide the circle in upper half $C_1$ and lower half $C_2$. For upper half, $y = \sqrt{R^2-x^2}$ and for lower half $y = -\sqrt{R^2-x^2}$ Let's compute the line integral for upper half first, $dy = \frac{1}{2\sqrt{R^2-x^2}}(-2x)dx = \frac{-x}{\sqrt{R^2-x^2}}dx$ So, $\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} (a\sqrt{R^2-x^2}dx+bx(\frac{-x}{\sqrt{R^2-x^2}})dx)$ $\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} \frac{(a(R^2-x^2)-{bx^2})}{\sqrt{R^2-x^2}}dx$ $\int_{C_1}\vec{v}.\vec{dl}=\int_{C_1} \frac{aR^2-(a+b)x^2}{\sqrt{R^2-x^2}}dx$ Since the Counterclockwise direction is considered to be positive, $\therefore x $ varies from $R$ to $-R$. $\int_{C_1}\vec{v}.\vec{dl}=\int_{R}^{-R} (\frac{aR^2}{\sqrt{R^2-x^2}} - \frac{(a+b)x^2}{\sqrt{R^2-x^2}} )dx$ $\int_{C_1}\vec{v}.\vec{dl}=\big\{ {aR^2}.sin^{-1}({x\over R}) - (a+b)\big [{-x\over 2} \sqrt{R^2-x^2}+{R^2\over 2} sin^{-1}({x\over R})\big ]\big \}_R^{-R}$ $\int_{C_1}\vec{v}.\vec{dl}=\big\{ \frac{1}{2}(a-b)R^2sin^{-1}({x\over R})\big \}_R^{-R} \qquad \because \int_R^{-R} \frac{-x}{2}\sqrt{R^2-x^2}=0$ $\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(a-b)sin^{-1}({-R\over R}) - \frac{1}{2}R^2(a-b)sin^{-1}({R\over R})$ $\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(a-b)({-\pi \over 2}-{\pi \over 2})$ $\int_{C_1}\vec{v}.\vec{dl}=\frac{1}{2}R^2(b-a)\pi$ For the second integral, $dy = -\frac{1}{2\sqrt{R^2-x^2}}(-2x)dx = \frac{x}{\sqrt{R^2-x^2}}dx$ $\int_{C_2}\vec{v}.\vec{dl}=\int_{C_2} (a(-\sqrt{R^2-x^2})dx+bx(\frac{x}{\sqrt{R^2-x^2}})dx)$ $\int_{C_2}\vec{v}.\vec{dl}=\int_{C_2} \frac{-aR^2+(a+b)x^2}{\sqrt{R^2-x^2}}dx$ Here $x$ varies from $-R$ to $R$ and hence $\int_{C_2}\vec{v}.\vec{dl}=\int_{-R}^{R} \frac{-aR^2+(a+b)x^2}{\sqrt{R^2-x^2}}dx$ Reversing the limits we get, $\int_{C_2}\vec{v}.\vec{dl}=\int_{R}^{-R} \frac{aR^2-(a+b)x^2}{\sqrt{R^2-x^2}}dx = \int_{C_1}\vec{v}.\vec{dl}$ and hence $\oint_C \vec{v}\cdot \vec{dl} =\frac{1}{2}R^2(b-a)\pi + \frac{1}{2}R^2(b-a)\pi $ $\oint_C \vec{v}\cdot \vec{dl} =\pi R^2(b-a)$ Hence stokes theorem is proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.