Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 44 - Quarks, Leptons, and the Big Bang - Problems - Page 1365: 40a

Answer

$$\beta=\frac{(1+z)^{2}-1}{(1+z)^{2}+1}=\frac{z^{2}+2 z}{z^{2}+2 z+2} $$

Work Step by Step

$\text { From } f=c / \lambda \text { and } \mathrm{Eq} .37-31,$ we get $$\lambda_{0}=\lambda \sqrt{\frac{1-\beta}{1+\beta}}=\left(\lambda_{0}+\Delta \lambda\right) \sqrt{\frac{1-\beta}{1+\beta}} $$ Dividing both sides by $\lambda_{0}$ leads to $$1=(1+z) \sqrt{\frac{1-\beta}{1+\beta}} $$ $\text { where } z=\Delta \lambda / \lambda_{0} . \text { We solve for } \beta: $ $$\beta=\frac{(1+z)^{2}-1}{(1+z)^{2}+1}=\frac{z^{2}+2 z}{z^{2}+2 z+2} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.