Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 42 - Nuclear Physics - Problems - Page 1304: 31a

Answer

$R_o = 7.53 \times 10^{16} \mathrm{s}^{-1}$

Work Step by Step

$$ \lambda=(\ln 2) / T_{1 / 2}=(\ln 2) /(78 \mathrm{h})=8.89 \times 10^{-3} \mathrm{h}^{-1} $$ The mass $m$ of a single atom of gallium is $$ m=(67 \mathrm{u})\left(1.661 \times 10^{-24} \mathrm{g} / \mathrm{u}\right)=1.113 \times 10^{-22} \mathrm{g} $$ If $M$ is the mass of the sample then $N_{o}=$ $M / m .$ $$ N_{o}=(3.4 \mathrm{g}) /\left(1.113 \times 10^{-22} \mathrm{g}\right)=3.05 \times 10^{22} $$ Thus, $$ R_{o}= \lambda N_o = \left(8.89 \times 10^{-3} \mathrm{h}^{-1}\right)\left(3.05 \times 10^{22}\right)=2.71 \times 10^{20} \mathrm{h}^{-1}=\boxed{7.53 \times 10^{16} \mathrm{s}^{-1}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.