Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 42 - Nuclear Physics - Problems - Page 1302: 5a

Answer

$${0.390 \mathrm{MeV}}$$

Work Step by Step

$$v_{\alpha f}=\frac{m_{\alpha}-m_{\mathrm{Au}}}{m_{\alpha}+m_{\mathrm{Au}}} v_{\alpha i}$$ and the recoiling gold nucleus is $$ v_{\mathrm{Au}, f}=\frac{2 m_{\alpha}}{m_{\alpha}+m_{\mathrm{Au}}} v_{\alpha i} $$ Therefore, the kinetic energy of the recoiling nucleus is $${\qquad K_{\text {Auf }} =\frac{1}{2} m_{\text {Au }} v_{\text {Auf }}^{2}=\frac{1}{2} m_{\text {Au }}\left(\frac{2 m_{\alpha}}{m_{\alpha}+m_{\text {Au }}}\right)^{2} v_{\text {ai }}^{2} =K_{\text {ai }} \frac{4 m_{\text {Au }} m_{\alpha}}{\left(m_{\alpha}+m_{\text {Au }}\right)^{2}} \\ =(5.00 \mathrm{MeV}) \frac{4(197 \mathrm{u})(4.00 \mathrm{u})}{(4.00 \mathrm{u}+197 \mathrm{u})^{2}} } \\ {} {=0.390 \mathrm{MeV}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.