Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 40 - All About Atoms - Problems - Page 1248: 39

Answer

$\frac{\lambda_{Nb}}{\lambda_{Ga}}\approx0.563$

Work Step by Step

According to Moseley plot, the graph of the square root of the characteristic-emission frequencies $\sqrt f$ versus atomic number $Z$ of the target atoms is a straight line and follows the following equation: $\sqrt f=C(Z-1)$, .......................$(1)$ where $C$ is a constant $(=4.96\times10^7\;Hz^{1/2})$ Substituting $\frac{c}{\lambda}$ for $f$ in Eq. $1$, we obtain $\sqrt {\frac{c}{\lambda}}=C(Z-1)$ Therefore, for a niobium (Nb) $(Z=41)$ target: $\sqrt {\frac{c}{\lambda_{Nb}}}=C(41-1)$ ..................$(2)$ and for a gallium (Ga) $(Z=31)$ target: $\sqrt {\frac{c}{\lambda_{Ga}}}=C(31-1)$ ..................$(3)$ Dividing Eq. $3$ by Eq. $2$, we obtain $\sqrt {\frac{\lambda_{Nb}}{\lambda_{Ga}}}=\frac{31-1}{41-1}$ or, $\frac{\lambda_{Nb}}{\lambda_{Ga}}=\frac{30^2}{40^2}$ or, $\frac{\lambda_{Nb}}{\lambda_{Ga}}=\frac{9}{16}$ or, $\frac{\lambda_{Nb}}{\lambda_{Ga}}\approx0.563$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.