Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 40 - All About Atoms - Problems - Page 1248: 28

Answer

For a given value of principal quantum number $n$, the the values of orbital quantum number $l$ are ranging from $0$ to $(n-1)$ For a given value of $l$, there are $(2l+1)$ possible values of magnetic quantum number $m_l$. For each $m_l$, there are two possible values for the spin quantum number $m_s$ (spin up and spin down). Thus, there are $2(2l+1)$ states for each value of $l$. $\therefore$ Total number for given $n$ is $N=\sum_0^{(n-1)}2(2l+1)$ or, $N=2\sum_0^{(n-1)}(2l+1)$ $N=2\Big [2\sum_0^{(n-1)}l+\sum_0^{(n-1)}1\Big]$ $N=2\Big [2\times\frac{n(n-1)}{2}+n\Big]$ $N=2\Big [n^2-n+n\Big]$ $N=2n^2$

Work Step by Step

For a given value of principal quantum number $n$, the the values of orbital quantum number $l$ are ranging from $0$ to $(n-1)$ For a given value of $l$, there are $(2l+1)$ possible values of magnetic quantum number $m_l$. For each $m_l$, there are two possible values for the spin quantum number $m_s$ (spin up and spin down). Thus, there are $2(2l+1)$ states for each value of $l$. $\therefore$ Total number for given $n$ is $N=\sum_0^{(n-1)}2(2l+1)$ or, $N=2\sum_0^{(n-1)}(2l+1)$ $N=2\Big [2\sum_0^{(n-1)}l+\sum_0^{(n-1)}1\Big]$ $N=2\Big [2\times\frac{n(n-1)}{2}+n\Big]$ $N=2\Big [n^2-n+n\Big]$ $N=2n^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.