Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Questions - Page 1180: 7

Answer

The electron does not acquire any fraction of the light's energy.

Work Step by Step

According to the conservation of energy, $hf=hf^\prime+K$, in which $hf$ is the energy of the incident x-ray photon, $hf^\prime$ is the energy of the scattered x-ray photon, and $K$ is the kinetic energy of the recoiling electron. $\therefore$ $K=hf-hf^\prime$ or, $K=\frac{ch}{\lambda}-\frac{ch}{\lambda^\prime}$ ...........$(1)$ Now the Compton shift $\Delta\lambda(=\lambda^\prime-\lambda)$ is given by the formula: $\Delta\lambda=\frac{h}{mc}(1-\cos\phi)$ Given, $\phi=0^{\circ}$ $\therefore$ $\Delta\lambda=\frac{h}{mc}(1-\cos0^{\circ})$ or, $\Delta\lambda=0$ or, $\lambda^\prime=\lambda$ Thus, the relation $(1)$ becomes, $K=0$ $\therefore$ The kinetic energy of the recoiling energy is zero. This implies that the electron does not acquire any fraction of the light's energy.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.