Answer
$m\approx2$
Work Step by Step
First, we find $d$:
$d=\frac{0.012}{8900}=1.3483\times 10^{-6}m$
We know that
$dsin{\theta}=m\lambda$
This can be rearranged as:
$m=\frac{dsin{\theta}}{\lambda}$
We plug in the know values to obtain:
$m=\frac{1.3483\times 10^{-6}\times sin{90^{\circ}}}{500\times 10^{-9} }\approx2$