Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 36 - Diffraction - Problems - Page 1112: 51b

Answer

$21.1^{\circ}$

Work Step by Step

Here, $d=\frac{1}{180}\;mm=\frac{10^{-3}}{180}\;m$ When $\lambda_1=400\;nm$, for $m_1$th order maxima, $d\sinθ_1=m_1λ_1$ or, $\sinθ_1=\frac{m_1λ_1}{d}\;.............(1)$ When $\lambda_2=500\;nm$, for $m_2$th order maxima, $d\sinθ_2=m_2λ_2$ or, $\sinθ_2=\frac{m_2λ_2}{d}\;.............(2)$ Equating eq. (1) and (2), we obtain $\frac{m_1λ_1}{d}=\frac{m_2λ_2}{d}$ or, $m_1=\frac{m_2λ_2}{λ_1}$ Putting the known values, $m_1=\frac{m_2\times500}{400}$ or, $m_1=1.25m_2$ The values of $m_1$ and $ m_2$ are integer. Thus, the lowest possible case, when the resulting maxima are superimposed is $m_2=4$ and so, $m_1=5$ Thus, the angle is $θ_1=\sin^{-1}(\frac{m_1λ_1}{d})$ or, $θ_1=\sin^{-1}(\frac{5\times400\times10^{-9}\times180}{10^{-3}})$ or, $θ_1=21.1^{\circ}$ Therefore, the smallest angle at which two of the resulting maxima are superimposed is $21.1^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.