Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 36 - Diffraction - Problems - Page 1112: 51a

Answer

$2.09^{\circ}$

Work Step by Step

Here, $d=\frac{1}{180}\;mm=\frac{10^{-3}}{180}\;m$ When $\lambda_1=400\;nm$, for second order maxima, $d\sinθ_1=2λ_1$ or, $\sinθ_1=\frac{2λ_1}{d}$ or, $θ_1=\sin^{-1}(\frac{2λ_1}{d})$ Substituting the known values $θ_1=\sin^{-1}(\frac{2\times400\times10^{-9}\times180}{10^{-3}})$ or, $θ_1=8.28^{\circ}$ When $\lambda_2=500\;nm$, for second order maxima, $d\sinθ_2=2λ_2$ or, $\sinθ_2=\frac{2λ_2}{d}$ or, $θ_2=\sin^{-1}(\frac{2λ_2}{d})$ Substituting the known values $θ_2=\sin^{-1}(\frac{2\times500\times10^{-9}\times180}{10^{-3}})$ or, $θ_2=10.37^{\circ}$ Therefore, the angular separation between the second order maxima is $(10.37^{\circ}-8.28^{\circ})=2.09^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.