Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 35 - Interference - Problems - Page 1075: 28

Answer

The greatest value of $x$ at which the light waves arrive exactly out of phase is $1.7\mu\mathrm{m}$.

Work Step by Step

At $x={x_s\over 2}=5\times 10^{-7}$, according to the graph, the phase difference between the two waves is $\phi=4\pi$. This translates into a path difference of $\Delta L={\lambda\over 2\pi}\phi={\lambda\over 2\pi}4\pi=2\lambda$ Using Pythagoras theorem, $\Delta \lambda=\sqrt{x^2+d^2}-x$ For $x=x_s/2=x’$ \begin{align*} \Delta \lambda&=\sqrt{x’^2+d^2}-x’\\ 2\lambda&=\sqrt{x’^2+d^2}-x’\\ (2\lambda+x’)^2&=x’^2+d^2\\ 4\lambda^2+x’^2+4\lambda x’&=x'^2+d^2\\ d^2&=4\lambda^2+4\lambda x’\\ d^2&=4\lambda(\lambda+x’) \end{align*} If light waves arriving at P must be exactly out of phase, they must interfere destructively. I.e., $\Delta L=\left(m+{1\over 2}\right)\lambda$ Again using the expression for the path difference for the required distance $x$ of P from $S_1$, \begin{align*} \sqrt{x^2+d^2}-x&=\left(m+{1\over 2}\right)\lambda\\ d^2+x^2&=\left(\left(m+{1\over 2}\right)\lambda+x\right)^2\\ d^2+x^2&=\left(m+{1\over 2}\right)^2\lambda^2+x^2+2x\left(m+{1\over 2}\right)\lambda\\ d^2&={(2m+1)^2\over 4}\lambda^2+2x\left(m+{1\over 2}\right)\lambda\\ 2x\left(m+{1\over 2}\right)\lambda&=d^2-{(2m+1)^2\over 4}\lambda^2\\ x&={d^2\over \lambda (2m+1)}-{2m+1\over 4}\lambda \end{align*} Substituting the expression for $d^2$ derived earlier, \begin{align*} x={4\lambda(\lambda+x’)\over \lambda (2m+1)}-{2m+1\over 4}\lambda\\ x={4(\lambda+x’)\over 2m+1}-{2m+1\over 4}\lambda \end{align*} To obtain the greatest value of x, we set $m=0$ (first dark fringe). Then $x=4(\lambda+x’)-{\lambda\over 4}$ Substituting the given values, $\lambda=400\times 10^{-9}\mathrm{m}$ and $x’=x_s/2=5\times 10^{-7}\mathrm{m}$, we get, \begin{align*} x&=4(\lambda+x’)-{\lambda\over 4}\\ x&=4(400\times 10^{-9}+5\times 10^{-10})-{400\times 10^{-9}\over 4}\\ &=1800\times 10^{-9}-100\times 10^{-9}\\ &=1700\times 10^{-9}\\ &=1.7\mu\mathrm{m} \end{align*} Hence the greatest value of $x$ at which the light waves arrive exactly out of phase is $1.7\mu\mathrm{m}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.