Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 35 - Interference - Problems - Page 1075: 25

Answer

The greatest value of $x_p$ at which destructive interference occurs is $7.88 \mu \mathrm{m}$.

Work Step by Step

The path difference between the two light waves originating at $S_1$ and $S_2$ at interfering at P is, $\Delta L=S_2P-S_1P$ Let $S_1P=x_p$ and $S_1S_2=d$, then from geometry, $S_2P=\sqrt{d^2+x_p^2}$. Then $\Delta L=\sqrt{d^2+x_p^2}-x_p$ For destructive interference to occur at P, the path difference must be half integral multiple of the wavelength. I.e.,$\Delta L=\left(m+{1\over 2}\right)\lambda$ Hence, $\sqrt{d^2+x_p^2}-x_p=\left(m+{1\over 2}\right)\lambda$ Rearranging and solving for $x_p$, \begin{align*} \sqrt{d^2+x_p^2}&=\left(m+{1\over 2}\right)\lambda+x_p\\ $d^2+x_p^2&=\left(\left(m+{1\over 2}\right)\lambda+x_p\right)^2\\ $d^2+x_p^2&=\left(m+{1\over 2}\right)^2\lambda^2+x_p^2+2x_p(m+{1\over 2})\lambda\\ d^2&={(2m+1)^2\over 4}\lambda^2+2x_p\left(m+{1\over 2}\right)\lambda\\ 2x_p\left(m+{1\over 2}\right)\lambda&=d^2-{(2m+1)^2\over 4}\lambda^2\\ x_p&={d^2\over \lambda (2m+1)}-{2m+1\over 4}\lambda \end{align*} To obtain the maximum value for $x_p$, we set $m=0$ (first dark fringe), $x_p={d^2\over\lambda}-{\lambda\over 4}$ Plugging in the given values $\lambda=900\times 10^{-9}\mathrm{m}, d=2.70\times 10^{-6}\mathrm{m}$, we get, \begin{align*} x_p&={7.29\times 10^{-12}\over 900\times 10^{-9}}-{900\times 10^{-9}\over 4}\\ &=0.0081\times 10^{-3}-225\times 10^-9\\ &=8.1\times 10^{-6}-0.225\times 10^{-6}\\ &=7.875\times 10^{-6}\\ &=7.88\mu \mathrm{m} \end{align*} Hence, the greatest value of $x_p$ at which destructive interference occurs is $7.88 \mu \mathrm{m}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.