Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 35 - Interference - Problems - Page 1074: 10b

Answer

It takes the light $~~1.42\times 10^{-13}~s~~$ to travel through layer 3.

Work Step by Step

We can find the speed in layer 3: $v = \frac{3.0\times 10^8~m/s}{1.45} = 2.069\times 10^8~m/s$ We can use Snell's law to find the angle of refraction $\theta_4$ in layer 3: $n_{air}~sin~\theta_1 = n_1~sin~\theta_2 = n_2~sin~\theta_2 = n_3~sin~\theta_4$ $n_{air}~sin~\theta_1 = n_3~sin~\theta_4$ $sin~\theta_4 = \frac{n_{air}~sin~\theta_1}{n_3}$ $sin~\theta_4 = \frac{1.00~sin~50^{\circ}}{1.45}$ $sin~\theta_4 = 0.5283$ $\theta_4 = sin^{-1}~(0.5283)$ $\theta_4 = 31.9^{\circ}$ We can find the distance the light travels in layer 3: $\frac{L_3}{d} = cos~31.9^{\circ}$ $d = \frac{L_3}{cos~31.9^{\circ}}$ $d = \frac{25\times 10^{-6}~m}{cos~31.9^{\circ}}$ $d = 29.45\times 10^{-6}~m$ We can find the time it takes the light to travel through layer 3: $t = \frac{29.45\times 10^{-6}~m}{2.069\times 10^8~m/s}$ $t = 1.42\times 10^{-13}~s$ It takes the light $~~1.42\times 10^{-13}~s~~$ to travel through layer 3.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.